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ABSTRACT

Security vulnerabilities are discovered, become publicly known, get exploited by attackers, and
patches come out. When should one apply security patches? Patch too soon, and you may suffer
from instability induced by bugs in the patches. Patch too late, and you get hacked by attackers
exploiting the vulnerability. We explore the factors affecting when it is best to apply security patches,
providing both mathematical models of the factors affecting when to patch, and collecting empirical
data to give the model practical value. We conclude with a model that we hope will help provide a
formal foundation for when the practitioner should apply security updates.

Introduction

‘‘To patch, or not to patch, – that is the question: –
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous script kiddies,
Or to take up patches against a sea of troubles,
And by opposing, end them?’’ [24]

‘‘ W h e n to patch?’’ presents a serious problem to
the security administrator because there are powerful
competing forces that pressure the administrator to
apply patches as soon as possible and also to delay
patching the system until there is assurance that the
patch is not more likely to cause damage than it pro-
poses to prevent. Patch too early, and one might be
applying a broken patch that will actually cripple the
system’s functionality. Patch too late, and one is at risk
from penetration by an attacker exploiting a hole that is
publicly known. Balancing these factors is problematic.

The pressure to immediately patch grows with
time after the patch is released, as more and more
script kiddies acquire scanning and attack scripts to
facilitate massive attacks [4]. Conversely, the pressure
to be cautious and delay patching decreases with time,
as more and more users across the Internet apply the
patch, providing either evidence that the patch is
defective, or (through lack of evidence to the contrary)
that the patch is likely okay to apply. Since these
trends go in opposite directions, it should be possible
to choose a time to patch that is optimal with respect to
the risk of compromising system availability. Figure 1
conceptually illustrates this effect; where the lines cross
is the optimal time to patch, because it minimizes the
total risk of loss.

This paper presents a proposed model for finding
the appropriate time to apply security patches. Our
approach is to model the cost (risk and consequences)

†This work supported by DARPA Contract F30602-01-C-
0172.

of penetration due to attack and of corruption due to a
defective patch, with respect to time, and then solve
for the intersection of these two functions.

These costs are functions of more than just time.
We attempt to empirically inform the cost of failure
due to defective patches with a survey of security
advisories. Informing the cost of security penetration
due to failure to patch is considerably more difficult,
because it depends heavily on many local factors.
While we present a model for penetration costs, it is
up to the local administrator to determine this cost.

Time

Risk of
Loss

Bad Patch Risk
Penetration Risk

Optimal Time to Patch

Figure 1: A hypothetical graph of risks of loss from
penetration and from application of a bad patch.
The optimal time to apply a patch is where the
risk lines cross.

In particular, many security administrators feel
that it is imperative to patch vulnerable systems imme-
diately. This is just an end-point in our model, repre-
senting those sites that have very high risk of penetra-
tion and have ample resources to do local patch testing
in aid of immediate deployment. Our intent in this
study is to provide guidelines to those who do not
have sufficient resources to immediately test and patch
everything, and must choose where to allocate scarce
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security resources. We have used the empirical data to
arrive at concrete recommendations for when patches
should be applied, with respect to the apparent com-
mon cases in our sample data.

It should also be noted that we are not considering
the issue of when to disable a service due to a vulnera-
bility. Our model considers only the question of when
to patch services that the site must continue to offer. In
our view, if one can afford to disable a service when
there is a security update available, then one probably
should not be running that service at all, or should be
running it in a context where intrusion is not critical.

Lastly, we do not believe that this work is the
final say in the matter, but rather continues to open a
new area for exploration, following on Browne, et al.
[4]. As long as frequent patching consume a signifi-
cant fraction of security resources, resource allocation
decisions will have to be made concerning how to deal
with these patches.

The rest of this paper is structured as follows. The
next section presents motivations for the models we use
to describe the factors that make patching urgent and
that motivate caution. Then, the next section formally
models these factors in mathematical terms and pre-
sents equations that express the optimal time to apply
patches. The subsequent section presents methods and
issues for acquiring data to model patch failure rates.
The paper then presents the empirical data we have col-
lected from the Common Vulnerabilities and Exposures
(CVE) database and describes work related to this
study. The paper ends with discussions the implications
of this study for future work and our conclusions.

Problem: When To Patch

The value of applying patches for known secu-
rity issues is obvious. A security issue that will shortly
be exploited by thousands of script-kiddies requires
immediate attention, and security experts have long
recommended patching all security problems. How-
ever, applying patches is not free: it takes time and
carries a set of risks. Those risks include that the patch
will not have been properly tested, leading to loss of
stability; that the patch will have unexpected interac-
tion with local configurations, leading to loss of func-
tionality; that the patch will not fix the security prob-
lem at hand, wasting the system administrator’s time.
Issues of loss of stability and unexpected interaction
have a direct and measurable cost in terms of time
spent to address them. To date, those issues have not
been a focus of security research. There is a related
issue: finding a list of patches is a slow and labor-
intensive process [7]. While this makes timely appli-
cation of patches less likely because of the investment
of time in finding them, it does not directly interact
with the risk that applying the patch will break things.
However, the ease of finding and applying patches has
begun to get substantial public attention [20] and is
not our focus here.

Most system administrators understand that these
risks are present, either from personal experience or
from contact with colleagues. However, we know of no
objective assessment of how serious or prevalent these
flaws are. Without such an assessment it is hard to
judge when (or even if) to apply a patch. Systems
administrators have thus had a tendency to delay the
application of patches because the costs of applying
patches are obvious, well known, and have been hard to
balance against the cost of not applying patches. Other
sources of delay in the application of patches can be
rigorous testing and roll-out procedures and regulations
by organizations such as the US Food and Drug
Administration that require known configurations of
systems when certified for certain medical purposes [1].

Some organizations have strong processes for
triaging, testing, and rolling-out patches. Others have
mandatory policies for patching immediately on the
release of a patch. Those processes are very useful to
them, and less obviously, to others, when they report
bugs in patches. The suggestions that we make regard-
ing delay should not be taken as a recommendation to
abandon those practices.1

The practical delay is difficult to measure, but its
existence can be inferred from the success of worms
such as Code Red. This is illustrative of the issue cre-
ated by delayed patching, which is that systems remain
vulnerable to attack. Systems which remain vulnerable
run a substantial risk of attacks against them succeed-
ing. One research project found that systems containing
months-old known vulnerabilities with available but
unapplied patches exposed to the Internet have a ‘‘life
expectancy’’ measured in days [14]. Once a break-in
has occurred, it will need to be cleaned up. The cost of
such clean-up can be enormous.

Having demonstrated that all costs relating to
patch application can be examined in the ‘‘currency’’
of system administrator time, we proceed to examine
the relationship more precisely.

Solution: Optimize the Time to Patch

To determine the appropriate time to patch, we
need to develop a mathematical model of the potential
costs involved in patching and not patching at a given
time. In this section we will develop cost functions
that systems administrators can use to help determine
an appropriate course of action.

First, we define some terms that we will need to
take into account:

• epatch is the expense of fixing the problem
(applying the patch), which is either an oppor-
tunity cost, or the cost of additional staff.

• ep.recover is the expense of recovering from a
failed patch, including opportunity cost of work

1As a perhaps amusing aside, if everyone were to follow
our suggested delay practice, it would become much less ef-
fective. Fortunately, we have no expectation that everyone
will listen to us.
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delayed. Both this and the next cost may
include a cost of lost business.

• ebreach is the expense of recovering from a secu-
rity breach, including opportunity cost of work
delayed and the cost of forensics work.

• pfail is the likelihood that applying a given
patch will cause a failure.

• pbreach is the likelihood that not applying a
given patch will result in a security breach.

All of these costs and probabilities are parame-
terized. The costs epatch, ep.recover, and ebreach are all
particular to both the patch in question and the config-
uration of the machine being patched. However,
because the factors affecting these costs are so specific
to an organization, we treat the costs as constants. This
is constant within an organization, not between organi-
zations, which we believe is sensible for a given sys-
tems administrator making a decision.

The probabilities pfail and pbreach vary with time.
Whether a patch is bad or not is actually a fixed fact at
the time the patch is issued, but that fact only becomes
known as the Internet community gains experience
applying and using the patch. So as a patch ages with-
out issues arising, the probability of a patch turning
out to be bad decreases.

The probability pbreach is a true probability that
increases with time in the near term. Browne, et al. [4]
examined exploitation rates of vulnerabilities and
determined influencing terms such as the release of a
scripted attack tool in rates of breaches. However, the

rate of breach is not a simple function
1

|Internet Hosts|

or even
N

|InternetHosts|
(where N is the number of

hosts or unprotected hosts that a systems administrator
is responsible for and |InternetHosts| is the number of
hosts on the Internet). Not every host with a vulnera-
bility will be attacked, although in the wake of real
world events such as the spread of Code Red [6] and
its variants, as well as work on Flash [26] and Warhol
[28] worms, it seems that it may be fair to make that
assumption.

Thus we will consider both probabilities pfail and
pbreach as functions of time (t), and write them pfail(t)
and pbreach(t).

Next, we want to to develop two cost functions:
• epatch(t): cost of patching at a given time t.
• enopatch(t): cost of not patching at a given time t.

The probable cost of patching a system drops
over time as the Internet community grows confidence
in the patch through experience. Conversely, the prob-
able cost of not patching follows a ‘ballistic’ trajec-
tory, as the vulnerability becomes more widely known,
exploitation tools become available, and then fall out
of fashion [4]; but, for the part of the ballistic curve
we are concerned with, we can just consider cost of
not patching to be monotonically rising. Therefore, the

administrator will want to patch vulnerable systems at
the earliest point in time where epatch(t) ≤ enopatch(t).

The cost of patching a system will have two
terms: the expense of applying the patch, and the
expense of recovering from a failed patch. Applying a
patch will likely have a fixed cost that must be paid
regardless of the quality of the patch. Recovery cost,
however, will only exist if a given patch is bad, so we
need to consider the expected risk in a patch. Since a
systems administrator cannot easily know a priori
whether a patch is bad or not, we multiply the proba-
bility that the patch induces failure by the expected
recovery expense. This gives us the function

epatch(t) = pfail(t)ep.recover + epatch (1)

It is possible, although not inexpensive, to obtain
much better estimations of the probability of failure
through the use of various testing mechanisms, such as
having a non-production mirror of the system, patch-
ing it, and running a set of tests to verify functionality.
However, such systems are not the focus of our work.

The cost of not applying a patch we consider to
be the expense of recovering from a security breach.
Again, an administrator is not going to know a priori
that a breach will occur, so we consider the cost of
recovery in terms of the probability of a security
breach occurring. Thus we have:

enopatch(t) = pbreach(t) ebreach (2)

Pulling both functions together, a systems
administrator will want to patch vulnerable systems
when the following is true:

pfail(t)ep.recover + epatch ≤ pbreach(t) ebreach (3)

In attempting to apply the functions derived
above, a systems administrator may want to take more
precise estimates of various terms.

On the Cost Functions
Expenses for recovering from bad patches and

security breaches are obviously site and incident spe-
cific, and we have simplified some of that out to ease
our initial analysis and aid in its understanding.

We could argue with some confidence that the
cost of penetration recovery often approximates the cost
of bad patch recovery. In many instances, it probably
amounts to ‘‘reinstall.’’ This simplifying assumption
may or may not be satisfactory. Recovery from a break-
in is likely harder than recovery from a bad patch,
because recovery from bad patch may simply be a rein-
stall, or at least does not involve the cost of dealing
with malice, while recovery from getting hacked is
identifying and saving critical state with tweezers, re-
formatting, re-installation, applying patches, recovering
state from backup, patching some more, ensuring that
the recovered state carries no security risk, and per-
forming forensics, a non-trivial expense [10]. However,
it is possible that recovery from a bad patch could have
a higher cost than penetration recovery – consider a
patch that introduces subtle file system corruption that
is not detected for a year.
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Furthermore, we note that many vendors are
working to make the application of security patches as
simple as possible, thereby reducing the expense of
applying a security patch [22, 25, 29]. As the fixed
cost of applying a patch approaches zero, we can sim-
ply remove it from the equations:

pfail(t) ep.recover ≤ pbreach(t) ebreach (4)

Alternately, we can assume that recovery from
being hacked is C times harder than recovery from bad
patch (C may be less than one). While the math is still
fairly simple, we are not aware of systemic research
into the cost of recovering from security break-ins.
However, a precise formulation of the time is less
important to this paper than the idea that the time
absorbed by script kiddies can be evaluated as a func-
tion of system administrator time. Expenses incurred
in recovery are going to be related to installation size
and number of affected machines, so an argument that
there is some relationship between costs can be made.
This allows us to state that:

ebreach = C ep.recover (5)

We can substitute this into equation 4:
pfail(t) ep.recover ≤ pbreach(t) C ep.recover (6)

Dividing each side by ep.recover, we arrive at the
decision algorithm:

pfail(t) ≤ pbreach(t) C (7)

Recall our assumptions that pbreach(t) rises with
time and pfail(t) drops with time. Therefore, the earliest
time t that equation 7 is satisfied is the optimal time to
apply the patch.

When to Start the Clock
While we discuss the value of the equations above

at given times, there are actually numerous points from
which time can be counted. There is the time from the
discovery of a vulnerability, time from the public
announcement of that vulnerability, and time since a
patch has been released. Browne, et al. [4] work from
the second, since the first may be unknown, but the
spread of the vulnerability information may be better
modeled from the first, especially if the vulnerability is
discovered by a black hat. A systems administrator may
only care from the time a patch is available, although
some may choose to shut off services known to be vul-
nerable before that as a last resort, and work has been
done on using tools such as chroot(2), Janus [12], and
SubDomain [9, 13] to protect services that are under
attack. In this paper, we have chosen to start counting
time from when the patch is released.

Methodology

The first thing to consider when deciding to
experimentally test the equations derived previously is
a source of data. We considered starting with specific
vendors’ advisories. Starting from vendor data has
flaws: it is difficult to be sure that a vendor has pro-
duced advisories for all vulnerabilities, the advisories
may not link to other information in useful ways, and

different vendors provide very different levels of
information in their advisories.

We decided instead to work from the Common
Vulnerabilities and Exposures (CVE) [16], a MITRE-
hosted project, to provide common naming and con-
cordance among vulnerabilities. Since MITRE is an
organization independent of vendors, using the CVE
database reduces the chance of bias. Starting from
CVE allows us to create generic numbers, which are
useful because many vendors do not have a sufficient
history of security fixes. However, there are also many
vendors who do have such a history and sufficient pro-
cess (or claims thereof) that it would be possible to
examine their patches, and come up with numbers that
apply specifically to them.

Data Gathering
Starting from the latest CVE (version 20020625),

we split the entries into digestible chunks. Each section
was assigned to a person who examined each of the ref-
erences. Some of the references were unavailable, in
which case they were ignored or tracked down using a
search engine. They were ignored if the issue was one
with many references (e.g., CVE-2001-0414 has 22 ref-
erences, and the two referring to SCO are not easily
found.) If there was no apparent patch re-issue, we
noted that. If there was, we noted how long it was until
the patch was withdrawn and re-released. Some advi-
sories did not make clear when or if a bad patch was
withdrawn, and in that case, we treated it as if it was
withdrawn by replacement on the day of re-issuance.

Methodological Issues
‘‘There are more things in Heaven and Earth,

Horatio,
Then are dream’t of in our Philosophy.’’ [24]

Research into vulnerabilities has an unfortunate
tendency to confound researchers with a plethora of
data gathering issues. These issues will impact the
assessment of how likely a patch is to fail. It is impor-
tant to choose a method and follow it consistently for
the results to have any meaning; unfortunately, any
method chosen causes us to encounter issues which
are difficult and troubling to resolve. Once we select a
method and follow it, our estimates may be systemati-
cally wrong for several reasons. Cardinality issues are
among the worst offenders:

• Vendors rolling several issues into one patch:
An example of this is found in one vendor
patch [19] which is referenced by seven candi-
dates and entries in the CVE (CAN-2001-0349,
CAN-2001-0350, CVE-2001-0345, CVE-2001-
0346, CVE-2001-0348, CVE-2001-0351, and
CVE-2001-0347).

• Vendors rolling one patch into several advi-
sories: An example here is CVE-2001-0414
with a dozen vendors involved. The vulnerabil-
ity is not independent because Linux and BSD
vendors commonly share fixes, and so an
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update from multiple vendors may be the same
patch. If this patch is bad, then in producing a
generic recommendation of when to patch, we
could choose to count it as N bad patches,
which would lead to a higher value for pfail, and
consequently, later patching. If the single patch
is good, then counting it as N good patches
could bias the probability of patch failure
downward.

• Vendors releasing advisories with work-
arounds, but no patches: An example is
CVE-2001-0221, where the FreeBSD team
issued the statement ‘‘[this program] is sched-
uled for removal from the ports system if it has
not been audited and fixed within one month of
discovery.’’ No one fixed it, so no patch was
released. A related situation occurred when a
third party, unrelated to Oracle, released an
advisory relating to Oracle’s product along with
a workaround, and Oracle remained completely
silent about the issue (CVE-2001-0326). We
recorded these instances but treated them as
non-events – our goal is to measure quality of
patches; if no patch was released, there is noth-
ing to measure.

There are several other potential sources of bias.
We may not have accurate information on whether a
vendor released an updated patch, because the CVE
entry points to the original, and the vendor released a
subsequent/different advisory. This potentially intro-
duces a bias by reducing our computed probability of
a harmful patch.

When patches are not independent, there is bias
in a different direction; consider if one or more ven-
dors released a revised update while others did not (for
example, CVE-2001-0318). We considered each CVE
entry as one patch, even if it involved multiple ven-
dors. We chose to record the data for the vendor who
issued the latest advisory revision (e.g., Debian over
Mandrake and Conectiva in CVE-2001-0318). This
potentially introduces a bias towards patches being
less reliable than they actually are. Systems adminis-
trators tracking the advisories of one specific vendor
would not have this potential source of bias.

It may be difficult to decide if a patch is bad or
not. For example, the Microsoft patch for
CVE-2001-0016 was updated six months after its
release. There was a conflict between this patch and
Service Pack 2 for Windows 2000. Installing the patch
would disable many of the updates in Service Pack 2.
Note that SP2 was issued four months after the patch,
so there was four months where the patch was harm-
less, and two months where the patch and Service
Pack 2 conflicted. We treated it as if was bad for the
entire six months.

There is a potential for concern with the number
of CVE entries we have examined. In the next section,
we attempt to infer appropriate times to apply patches

by observing the knees in the curves shown in Figures
7 and 9, and these inferences would be stronger if
there were sufficient data points to be confident that
the knees were not artifacts of our sample data.

More data points would be desirable, but obtain-
ing it is problematic. We found the CVE repository to
be limiting, in that it was difficult to determine
whether any given security patch was defective. For
future research, we recommend using security advi-
sory information direct from vendors. In addition to
providing more detail, such an approach would help
facilitate computing patch failure rate with respect to
each vendor.

We do not believe that these issues prevent a
researcher from analyzing the best time to patch, or a
systems administrator from making intelligent choices
about when to patch. However, these methodological
issues do need to be considered in further studies of
security patch quality.

Empirical Data

In this section, we examine the data we collected
as discussed in the previous section. We examined 136
CVE entries, dating from 1999, 2000, and 2001. Of
these, 92 patches never were revised leading us to
believe they were safe to apply, 20 patches either were
updated or pulled, and 24 CVE entries were non-patch
events as discussed in ‘Methodological Issues.’ Table
2 summarizes this data. Of the 20 patches that were
determined to be faulty, all but one (CVE-2001-0341)
had an updated patch released. Of these, three were
found to be faulty and had a second update released;
one subsequently had a third revision released. Table 3
summarizes the data for the revised patches.

Total CVE entries examined 136
Good patches 92

Revised or pulled patches 20
Non-patch entries 24

Table 2: Quality of initial patches.

Revised or pulled patches 20
Good revised patches 16

Re-revised patches 3
Pulled and never re-released patches 1

Table 3: Quality of revised patches.

Table 4 analyzes the properties of the patch revi-
sions. The middle column shows the number of days
from the initial patch release until an announcement of
some kind appeared indicating that the patch was bad,
for the 20 patches that were revised. The right column
shows the number of days from the revised patch
release until notification that the revised patch was
faulty, for the three issues that had subsequent revi-
sions. Three data points is insufficient to draw
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Figure 5: A histogram of the number of faulty initial patches.
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Figure 6: The probability pfail(t) that an initial patch has been incorrectly identified as safe to apply.
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Figure 7: A cumulative graph showing the time to resolve all issues.
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meaningful conclusions, so we will disregard doubly
or more revised patches from here on. We found one
triply revised patch, occurring seven days after the
release of the second revision.

Notification
time in days

Initial revision
(20 data points)

Subsequent
revision

(3 data points)
Maximum 500 62
Minimum 1 1
Average 64.2 22.7
Median 17.5 5

Std deviation 117.0 34.1

Table 4: Analysis of revision data.

Figure 5 presents a histogram over the 20 revised
patches of the time from the initial patch release to the
time of the announcement of a problem with the patch,
while Figure 8 examines the first 30-day period in
detail. Figure 6 presents the same data set as a proba-
bility at a given time since initial patch release that a
patch will be found to be bad, i.e., an empirical plot of
pfail(t) from equation 7.

Figure 7 plots the days to resolve an accumulated
number of security issues, while Figure 9 examines
the first 30-day period more closely. These plots are
subtly different from the previous data sets in two
ways:

• Time to resolution: In the previous graphs, we
counted time from when the security patch was
announced to the time the patch was announced
to be defective. Here, we are measuring to the
time the defective patch is resolved. Of the 20
revised patches, 16 provided a revised patch
concomitant with the announcement of the
patch problem, two had a one-day delay to the
release of a revised patch, one had a 97 day
delay to the release of a revised patch, and one
defective patch was never resolved.

• No patch ever released: Of the 136 CVE
entries that we surveyed, 24 never had any
patch associated with them, and so for these
plots, will never be resolved.

Ideally, we would like to be able to overlay Fig-
ure 6 with a similar probability plot for ‘‘probability of
getting hacked at time t past initial disclosure,’’ or
pbreach(t). Unfortunately, it is problematic to extract
such a probability from Browne, et al.’s data [4]
because the numerator (attack incidents) is missing
many data points (people who did not bother to report
an incident to CERT), and the denominator is huge
(the set of all vulnerable nodes on the Internet).

From Honeynet [14] one may extract a pbreach(t).
Honeynet sought to investigate attacker behavior by
placing ‘‘honeypot’’ (deliberately vulnerable) systems
on the Internet, and observing the subsequent results.
In particular, Honeynet noted that the lifespan of an

older, unpatched Red Hat Linux system containing
months-old known vulnerabilities could be as short as
a small number of days, as attacker vulnerability scan-
ning tools quickly located and exploited the vulnerable
machine. However we note that this probability may
not correlate to the system administrator’s site. Site
specific factors – site popularity, attention to security
updates, vulnerability, etc. – affect the local pbreach(t),
and as such it must be measured locally.
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Figure 8: A close-up histogram of the first class inter-
val in Figure 5. It shows the number of faulty ini-
tial patch notifications occurring within 30 days
of initial patch release.
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Figure 9: A close-up cumulative graph of the first 30
days in Figure 7. It shows the issue resolution
time for those occurring within 30 days of initial
patch release.

After determining local probability of a breach
(i.e., pbreach(t)), the administrator should apply Figure
6 to equation 7 to determine the first time t where
equation 7 is satisfied. However, since pbreach(t) is dif-
ficult to compute, the pragmatist may want to observe
the knees in the curve depicted in Figures 7 and 9 and
apply patches at either ten or thirty days.

Related Work

This paper was inspired by the ‘‘Code Red’’ and
‘‘ N i m d a ’’ worms, which were so virulent that some

2002 LISA XVI – November 3-8, 2002 – Philadelphia, PA 107



Ti m i n g the Application of Security Patches for Optimal Uptime Beattie, et al.

analysts conjectured that the security administrators of
the Internet could not patch systems fast enough to stop
them [20]. Even more virulent worm systems have been
devised [28, 26] so the problems of ‘‘when to patch?’’
and ‘‘can we patch fast enough?’’ are very real.

The recent survey of rates of exploitation [4] was
critical to our work. In seeking to optimize the trade-
off between urgent and cautious patching, it is impor-
tant to understand both forms of pressure, and
Browne, et al. provided the critical baseline of the
time-sensitive need to patch.

Schneier [23] also studied rates of exploitation
versus time of disclosure of security vulnerabilities.
However, Schneier conjectured that the release of a
vendor patch would peak the rate of exploitation. The
subsequent study by Browne, et al. of CERT incident
data above belied this conjecture, showing that
exploitation peaks long after the update is released,
demonstrating that most site administrators do not
apply patches quickly.

Reavis [21] studied the timeliness of vendor-sup-
plied patches. Reavis computed the average ‘‘days of
recess’’ (days when a vulnerability is known, but no
patch is available) for each of Microsoft, Red Hat
Linux, and Solaris. Our clock of ‘‘when to patch?’’
starts when Reavis’ clock of ‘‘patch available’’ stops.

Howard [15] studied Internet security incident
rates from 1989 to 1995. He found that, with respect
to the size of the Internet, denial-of-service attacks
were increasing, while other attacks were decreasing.
The cause of these trends is difficult to establish with-
out speculation, but it seems plausible that the expo-
nential growth rate of the Internet exceeded the
growth rate of attackers knowledgeable enough to per-
petrate all but the easiest (DoS) attacks.

In 1996, Farmer [11] surveyed prominent web
hosting sites and found that nearly two-thirds of such
sites had significant vulnerabilities, well above the one-
third average of randomly selected sites. Again, root
causes involve speculation, but it is likely that this
resulted from the complex active content that prominent
web sites employ versus randomly selected sites. It is
also likely that this trend has changed, as e-commerce
sites experienced the pressures of security attacks.

In recent work, Anderson [2] presents the view-
point that many security problems become simpler
when viewed through an economic lens. In this paper,
we suggest that the system administrator’s failure to
patch promptly is actually not a failure, but a rational
choice. By analyzing that choice, we are able to sug-
gest a modification to that behavior which addresses
the concerns of the party, rather than simply exhorting
administrators to patch.

Also worth mentioning is the ongoing study of
perception of risk. In McNeil, et al. [17], the authors
point out that people told that a medical treatment has
a 10% risk of death react quite differently than people

told that 90% of patients survive. It is possible that
similar framing issues may influence administrators
behavior with respect to security patches.

Discussion

As we performed this study, we encountered sev-
eral practical issues. Some were practical impediments
to the execution of the study, while others were of
larger concern to the community of vendors and users.
Addressing these issues will both make future research
in this area more consistent and valid, and also may
improve the situation of the security practitioner.

The first issue is that of setting the values for the
constants in our equations, e.g., the cost of breach
recovery versus the cost of bad patch recovery, and the
probability of a breach for a given site. These values
are site-specific, so we cannot ascertain them with any
validity:

• A web server that is just a juke box farm of
CD-ROMs is not as susceptible to data corrup-
tion as an on-line gambling house or a credit
bureau, affecting the relative costs of recovery.

• A private corporate server behind a firewall is
less likely to be attacked than a public web server
hosting a controversial political advocacy page.

We wish to comment that the administrator’s
quandary is made worse by vendors who do a poor job
of quality assurance on their patches, validating the
systems administrator’s decision to not patch. Our
ideas can be easily taken by a vendor as advice as to
how to improve their patch production process and
improve their customer’s security. If the standard devi-
ation of patch failure times is high, then administrators
will rationally wait to patch, leaving themselves inse-
cure. Extra work in assurance may pay great divi-
dends. In future work, it would be interesting to exam-
ine vendor advance notice (where vendors are notified
of security issues ahead of the public) and observe
whether the reliability of subsequent patches are more
reliable, i.e., do vendors make good use of the addi-
tional time.

In collecting data, we noticed but have not yet
analyzed a number of trends: Cisco patches failed
rarely, while other vendors often cryptically updated
their advisories months after issue. The quality of
advisories varies widely. We feel it is worth giving
kudos to Caldera for the ease with which one can
determine that they have issued a new patch [5]. How-
ever, they could learn a great deal from some Cisco
advisories [8] in keeping detailed advisory revision
histories. Red Hat’s advisories included an ‘‘issue
date,’’ which we later discovered is actually the first
date that they were notified of the issue, not the date
they issued the advisory. There has not, to our knowl-
edge, been a paper on ‘‘how to write an advisory,’’ or
on the various ways advisories are used.

If one assumes that all problems addressed in
this paper relating to buggy patches have been solved,
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the administrator must still reliably ascertain the valid-
ity of an alleged patch. Various forms of cryptographic
authentication, such as PGP signatures on Linux RPM
packages [3] and digital signatures directly on binary
executables [27] can be used. Such methods become
essential if one employs automatic patching mecha-
nisms, as proposed by Browne, et al. [4] and provided
by services such as Debian apt-get [25], Ximian Red
Carpet [29], the Red Hat Network [22], and the auto-
matic update feature in Microsoft Windows XP [18].2

Conclusions

‘‘Never do today what you can put off till tomor-
row if tomorrow might improve the odds.’’

– Robert Heinlein

The diligent systems administrator faces a
quandary: to rush to apply patches of unknown quality
to critical systems, and risk resulting failure due to
defects in the patch? Or to delay applying the patch,
and risk compromise due to attack of a now well-
known vulnerability? We have presented models for
the pressures to patch early and to patch later, formally
modeled these pressures mathematically, and popu-
lated the model with empirical data of failures in secu-
rity patches and rates of exploitation of known flaws.
Using these models and data, we have presented a
notion of an optimal time to apply security updates.
We observe that the risk of patches being defective
with respect to time has two knees in the curve at 10
days and 30 days after the patch’s release, making 10
days and 30 days ideal times to apply patches. It is our
hope that this model and data will both help to inspire
follow-on work and to form a best-practice for diligent
administrators to follow.
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